Functions Question 430
Question: If f(x) = x and $ g(x)=| x | $ , then $ (f+g)(x) $ is equal to
Options:
A) 0 for all $ x\in R $
B) 2x for all $ x\in R $
C) $ \begin{cases} 2x,forx\ge 0 \\ 0,forx<0 \\ \end{cases} . $
D) $ \begin{cases} 0,forx\ge 0 \\ 2x,forx<0 \\ \end{cases} . $
Show Answer
Answer:
Correct Answer: C
Solution:
[c] Given functions are:  $ f(x)=x $  and  $ g(x)=| x | $
$ \therefore (f+g)(x)=f(x)+g(x)=x+| x | $  According to definition of modulus function,  $ (f+g)(x)=  \begin{cases}    x+x,x\ge 0  \\    x-x,x<0  \\ \end{cases} =  \begin{cases}    2x,x\ge 0  \\    0,x<0  \\ \end{cases}  . . $
 BETA
  BETA 
             
             
           
           
           
          