Functions Question 432

Question: Let $ f(x+y)=f(x)f(y) $ and $ f(x)=1+\sin (3x)g(x) $ where $ g(x) $ is continuous then $ f’(x) $ is

[Kerala (Engg.) 2005]

Options:

A) $ f(x)g(0) $

B) $ 3g(0) $

C) $ f(x)\cos 3x $

D) $ 3f(x)g(0) $

E) $ 3f(x)g(x) $

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=1+\sin (3x)g(x) $ $ f’(x)=3\cos 3x,g(x)+\sin 3x,g’(x) $ $ =f(x)\cos 3x $ .