Functions Question 432
Question: Let $ f(x+y)=f(x)f(y) $ and $ f(x)=1+\sin (3x)g(x) $ where $ g(x) $ is continuous then $ f’(x) $ is
[Kerala (Engg.) 2005]
Options:
A) $ f(x)g(0) $
B) $ 3g(0) $
C) $ f(x)\cos 3x $
D) $ 3f(x)g(0) $
E) $ 3f(x)g(x) $
Show Answer
Answer:
Correct Answer: C
Solution:
$ f(x)=1+\sin (3x)g(x) $ $ f’(x)=3\cos 3x,g(x)+\sin 3x,g’(x) $ $ =f(x)\cos 3x $ .