Functions Question 434

Question: The composite mapping $ fog $ of the map $ f:R\to R $ , $ f(x)=\sin x $ , $ g:R\to R $ , $ g(x)=x^{2} $ is

[UPSEAT 2000]

Options:

A) $ \sin x+x^{2} $

B) $ {{(\sin x)}^{2}} $

C) $ \sin x^{2} $

D) $ \frac{\sin x}{x^{2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ f:R\to R,f(x)=\sin x $ and $ g:R\to R,g(x)=x^{2} $
Þ $ fog(x)=f(g(x))=f(x^{2})=\sin x^{2} $ .