Functions Question 434
Question: The composite mapping $ fog $ of the map $ f:R\to R $ , $ f(x)=\sin x $ , $ g:R\to R $ , $ g(x)=x^{2} $ is
[UPSEAT 2000]
Options:
A) $ \sin x+x^{2} $
B) $ {{(\sin x)}^{2}} $
C) $ \sin x^{2} $
D) $ \frac{\sin x}{x^{2}} $
Show Answer
Answer:
Correct Answer: C
Solution:
$ f:R\to R,f(x)=\sin x $ and $ g:R\to R,g(x)=x^{2} $
Þ $ fog(x)=f(g(x))=f(x^{2})=\sin x^{2} $ .