Functions Question 451

Question: If $ f(x) $ and $ g(x) $ are periodic functions with periods 7 and 11, respectively, then the period of $ F(x)=f(x)g( \frac{x}{5} )-g(x)f( \frac{x}{3} ) $ is

Options:

177

222

433

D) 1155

Show Answer

Answer:

Correct Answer: D

Solution:

The period of $ f(x) $ is 7. So, the period of $ f( \frac{x}{3} ) $ is $ 7 \times 3=21. $ The period of g(x) is 11. So, the period of $ g( \frac{x}{5} ) $ is $ \frac{11}{1/5}=55 $ . Hence, $ T_1= $ period of $ f(x),g,( \frac{x}{5} )=7\times 5=35 $ and $ T_2= $ period of $ g(x)f( \frac{x}{3} )= \text{lcm}(11,21)=231 $

$ \therefore $ Period of $ F(x)=LCM{T_1,T_2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें