Functions Question 453
Question: Let $A=\{p, q, r\}$. Which of the following is an equivalence relation on $A$ ?
Options:
A) $R_1= \{(p, q),(q, r),(p, r),(p, p)\}$
B) $ R_2 = \{(r,q),(r,p),(r,r),(q,q)\} $
C) $ R_3=\{(p,p),(q,q),(r,r),(p,q) \} $
D) None of these
Show Answer
Answer:
Correct Answer: D
Solution:
[d]  $ R_1 $  is not reflexive, because  $ (q,q)(r,r)\notin R_1. $
$ \therefore R_1 $  is not an equivalence relation  $ R_2 $  is not reflexive, because  $ (p,p)\notin R_2. $
$ \therefore R_2 $  is not an equivalence relation.  $ R_3 $  is reflexive, because  $ (p,p),(q,q),(r,r)\in R_3. $   $ R_3 $  is not symmetric, because  $ (p,q)\in R_3 $  but  $ (q,p)\notin R_3. $
 BETA
  BETA 
             
             
           
           
           
          