Functions Question 456
Question: Let $ \rho $ be the relation on the set R of all real numbers defined by setting $ a\rho b $ if f $ | a-b |\le \frac{1}{2}. $ then, $ \rho $ is
Options:
A) Reflexive and symmetric but not transitive
B) Symmetric and transitive but not reflexive
C) Transitive but neither reflexive nor symmetric
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
[a]  $ \rho  $  is reflexive, since  $ | a-a |=0<\frac{1}{2} $  for all  $ a\in R. $   $ \rho  $  is symmetric, since
$ \Rightarrow | b-a |<\frac{1}{2} $   $ \rho  $  is not transitive. For. If we take three numbers  $ \frac{3}{4},\frac{1}{3},\frac{1}{8}. $  Then,  $ | \frac{3}{4}-\frac{1}{3} |=\frac{5}{12}<\frac{1}{2} $  and  $ | \frac{1}{3}-\frac{1}{8} |=\frac{5}{24}<\frac{1}{2} $  But,  $ | \frac{3}{4}-\frac{1}{8} |=\frac{5}{8}>\frac{1}{2} $  Thus,  $ \frac{3}{4}\rho \frac{1}{3} $  and  $ \frac{1}{3}\rho \frac{1}{8} $  but  $ \frac{3}{4}(\tilde{\ }\rho )\frac{1}{8} $
 BETA
  BETA 
             
             
           
           
           
          