Functions Question 457
Question: If $ f(x)= \begin{cases} & \frac{|x-a|}{x-a},when x\ne a \\ & 1,when x=a \\ \end{cases} $ ,then
[AI CBSE 1983]
Options:
A) $ f(x) $ is continuous at $ x=a $
B) $ f(x) $ is discontinuous at $ x=a $
C) $ \underset{x\to a}{\mathop{\lim }} f(x)=1 $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
$ \underset{x\to a-}{\mathop{\lim }} f(x)=-1, \underset{x\to a+}{\mathop{\lim }} f(x)=1,f(a)=1. $