Functions Question 457

Question: If $ f(x)= \begin{cases} & \frac{|x-a|}{x-a},when x\ne a \\ & 1,when x=a \\ \end{cases} $ ,then

[AI CBSE 1983]

Options:

A) $ f(x) $ is continuous at $ x=a $

B) $ f(x) $ is discontinuous at $ x=a $

C) $ \underset{x\to a}{\mathop{\lim }} f(x)=1 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \underset{x\to a-}{\mathop{\lim }} f(x)=-1, \underset{x\to a+}{\mathop{\lim }} f(x)=1,f(a)=1. $