Functions Question 464
Question: $ f(x)=| x-1 |,f:{R^{+}}\to R $ and $ g(x)=e^{x}, $ $ g:[(-1,\infty )\to R]. $ If the function fog (x) is defined, then its domain and range respectively are
Options:
A) $ (0,\infty )and[0,\infty ) $
B) $ [-1,\infty )and[0,\infty ) $
C) $ [-1,\infty )and[ 1-\frac{1}{e},\infty ) $
D) $ [-1,\infty )and[ \frac{1}{e}-1,\infty ) $
Show Answer
Answer:
Correct Answer: B
Solution:
[b]  $ f(x)=| x-1 |=  \begin{cases}    1-x,,0<x<1  \\    x-1,,x\ge 1  \\ \end{cases}  . $   $ g(x)=e^{x},x\ge -1 $   $ (fog)(x)=  \begin{cases}    1-g(x),,0<g(x)<1i.e.-1\le x<0  \\    g(x)-1,,g(x)\ge 1i.e.0\le x  \\ \end{cases}  . $   $ =  \begin{cases}    1-e^{x},-1\le x<0  \\    e^{x}-1,x\ge 0  \\ \end{cases}  . $
$ \therefore  $ Domain  $ =[-1,\infty ) $  fog is decreasing in  $ [-1,0) $  and increasing in  $ [0,\infty ) $   $ fog(-1)=1-\frac{1}{e} $  and  $ fog(0)=0 $  As  $ x\to \infty ,fog(x)\to \infty , $
$ \therefore  $  range  $ =[0,\infty ) $
 BETA
  BETA 
             
             
           
           
           
          