Functions Question 468

Question: Let $ g(x)=1+x-

[x] $ and $ f(x)= \begin{cases} & -1,\ x<0 \\ & 0,\ \ x=0,\ \\ & \text{1,}\ \ \ x>0 \\ \end{cases} . $ then for all $ x,\ f(g(x)) $ is equal to [IIT Screening 2001; UPSEAT 2001]

Options:

A) x

B) 1

C) $ f(x) $

D) $ g(x) $

Show Answer

Answer:

Correct Answer: B

Solution:

Here $ g(x)=1+n-n=1,,x=n\in Z $ $ 1+n+k-n=1+k $ , $ x=n+k $ (where $ n\in Z,,0<k<1 $ ) Now $ f(g(x))= \begin{cases} & -1,,g(x)<0 \\ & ,0,g(x)=0 \\ & ,1,,g(x)>0 \\ \end{cases} . $ Clearly, $ g(x)>0 $ for all x. So, $ f(g(x))=1 $ for all x.