Functions Question 469

Question: Let R be a relation over the $ N\times N $ and it is defined by (a, b) R (c, d)

$ \Rightarrow a+d=b+c. $ Then R is

Options:

A) Reflexive only

B) Symmetric only

C) Transitive only

D) An equivalence relation

Show Answer

Answer:

Correct Answer: D

Solution:

[d] we have $ (a,b)R(a,b) $ for all $ (a,b)\in N\times N $ As $ a+b=b+a. $ Hence, R is reflexive R is symmetric for we have (a, b) R (c, d)

$ \Rightarrow a+d=b+c $
$ \Rightarrow d+a=c+b $

$ \Rightarrow a+b=b+c $
$ \Rightarrow (c,d)R(e,f) $ Then, by definition of R, we have $ a+d=b+c $ and $ c+f=d+e $ So, by addition, we get $ a+d+c+f=b+c+d+c $ or $ a+f=b+e $ Hence, $ (a,b)R(e,f) $ Thus, $ (a,b)R(c,d) $ and $ (c,d)R(e,f) $

$ \Rightarrow (a,b)R(e,f) $