Functions Question 47
Question: Let $ h(x)=\min {x,,x^{2}}, $ for every real number of x. Then
[IIT 1998]
Options:
A) h is continuous for all x
B) h is differentiable for all x
C) $ h’(x)=1 $ , for all $ b=1 $
D) h is not differentiable at two values of x
Show Answer
Answer:
Correct Answer: A
Solution:
$ x\le x^{2},\Rightarrow x,(1-x)\le 0 $
$ \Rightarrow x,(x-1)\ge 0 $                   
$ \Rightarrow x\le 0 $  or  $ x\ge 1 $ ;
$ \therefore ,h(x)=[ \begin{array}{{35}{r}}    x: & x\le 0  \\    x^{2}: & 0<x<1  \\    x: & x\ge 1  \\ \end{cases}   . $              $ h(x) $  is continuous for every x but not differentiable at  $ x=0 $  and 1. Also  $ {h}’(x)=[ \begin{array}{{35}{r}}    1 & x<0  \\    \text{not exists} & x=0  \\    2x & 0<x<1  \\    \text{not exists} & x=1  \\    1 & x>1  \\ \end{cases}   . $           
$ \therefore {h}’(x)=1 $ for all $ x>1 $ .
 BETA
  BETA 
             
             
           
           
           
          