Functions Question 47

Question: Let $ h(x)=\min {x,,x^{2}}, $ for every real number of x. Then

[IIT 1998]

Options:

A) h is continuous for all x

B) h is differentiable for all x

C) $ h’(x)=1 $ , for all $ b=1 $

D) h is not differentiable at two values of x

Show Answer

Answer:

Correct Answer: A

Solution:

$ x\le x^{2},\Rightarrow x,(1-x)\le 0 $
$ \Rightarrow x,(x-1)\ge 0 $
$ \Rightarrow x\le 0 $ or $ x\ge 1 $ ;
$ \therefore ,h(x)=[ \begin{array}{{35}{r}} x: & x\le 0 \\ x^{2}: & 0<x<1 \\ x: & x\ge 1 \\ \end{cases} . $ $ h(x) $ is continuous for every x but not differentiable at $ x=0 $ and 1. Also $ {h}’(x)=[ \begin{array}{{35}{r}} 1 & x<0 \\ \text{not exists} & x=0 \\ 2x & 0<x<1 \\ \text{not exists} & x=1 \\ 1 & x>1 \\ \end{cases} . $
$ \therefore {h}’(x)=1 $ for all $ x>1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें