Functions Question 48
Question: $ \underset{x\to 0}{\mathop{\lim }},\frac{{{(1+x)}^{5}}-1}{{{(1+x)}^{3}}-1}= $
Options:
A) 0
B) 1
C) 5/3
D) 3/5
Show Answer
Answer:
Correct Answer: C
Solution:
$ \underset{x\to 0}{\mathop{\lim }}\frac{x,{{[}^{5}}C_1{{+}^{5}}C_2x{{+}^{5}}C_3x^{2}{{+}^{5}}C_4x^{3}{{+}^{5}}C_5x^{4}]}{x,{{[}^{3}}C_1{{+}^{3}}C_2x{{+}^{3}}C_3x^{2}]} $ $ =\frac{5}{3}. $ Aliter : Apply L-Hospital?s rule.