Functions Question 48

Question: $ \underset{x\to 0}{\mathop{\lim }},\frac{{{(1+x)}^{5}}-1}{{{(1+x)}^{3}}-1}= $

Options:

A) 0

B) 1

C) 5/3

D) 3/5

Show Answer

Answer:

Correct Answer: C

Solution:

$ \underset{x\to 0}{\mathop{\lim }}\frac{x,{{[}^{5}}C_1{{+}^{5}}C_2x{{+}^{5}}C_3x^{2}{{+}^{5}}C_4x^{3}{{+}^{5}}C_5x^{4}]}{x,{{[}^{3}}C_1{{+}^{3}}C_2x{{+}^{3}}C_3x^{2}]} $ $ =\frac{5}{3}. $ Aliter : Apply L-Hospital?s rule.