Functions Question 481

Question: Let $ f:R\to R $ be a function defined by $ f(x)=\frac{x-m}{x-n}, $ where $ m\ne n, $ then

Options:

A) f is one-one onto

B) f is one-one into

C) f is many-one onto

D) f is many-one into

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let $ f:R\to R $ be a function defined by $ f(x)=\frac{x-m}{x-n} $ For any $ (x,y)\in R $ Let $ f(x)=f(y) $
$ \Rightarrow \frac{x-m}{x-n}=\frac{y-m}{y-n}\Rightarrow x=y\therefore $ f is one-one Let $ \alpha \in R $ such that $ f(x)=\alpha $
$ \Rightarrow a=\frac{x-m}{x-n}\Rightarrow (x-n)\alpha =x-m $
$ \Rightarrow x=\frac{n\alpha -m}{\alpha -1}. $ for $ \alpha =1,x\notin R $ so, f is not onto.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें