Functions Question 488
Question: The function $ f(x)=(x^{2}-1)|x^{2}-3x+2|+\cos (|x|) $ is not differentiable at
[IIT 1999]
Options:
A) -1
B) 0
C) 1
D) 2
Show Answer
Answer:
Correct Answer: D
Solution:
Since function  $ |x| $  is not differentiable at  $ x=0 $                   
$ \therefore ,|x^{2}-3x+2|=|(x-1)(x-2)| $                     Hence is not differentiable at  $ x=1 $  and 2                    Now $ f(x)=(x^{2}-1)|x^{2}-3x+2|\cos (|x|) $  is not differentiable at  $ x=2 $                     For  $ 1<x<2 $ ,  $ f(x)=-(x^{2}-1)(x^{2}-3x+2)+\cos x $                     For  $ 2<x<3 $ ,  $ f(x)=+(x^{2}-1)(x^{2}-3x+2)+\cos x $                      $ Lf’(x)=-(x^{2}-1)(2x-3)-2x(x^{2}-3x+2)-\sin x $                      $ Lf’(2)=-3-\sin 2 $                      $ Rf’(x)=(x^{2}-1)(2x-3)+2x(x^{2}-3x+2)-\sin x $                      $ Rf’(2)=(4-1)(4-3)+0-\sin 2=3-\sin 2 $                     Hence  $ Lf’(2)\ne Rf’(2) $ .
 BETA
  BETA 
             
             
           
           
           
          