Functions Question 488

Question: The function $ f(x)=(x^{2}-1)|x^{2}-3x+2|+\cos (|x|) $ is not differentiable at

[IIT 1999]

Options:

A) -1

B) 0

C) 1

D) 2

Show Answer

Answer:

Correct Answer: D

Solution:

Since function $ |x| $ is not differentiable at $ x=0 $
$ \therefore ,|x^{2}-3x+2|=|(x-1)(x-2)| $ Hence is not differentiable at $ x=1 $ and 2 Now $ f(x)=(x^{2}-1)|x^{2}-3x+2|\cos (|x|) $ is not differentiable at $ x=2 $ For $ 1<x<2 $ , $ f(x)=-(x^{2}-1)(x^{2}-3x+2)+\cos x $ For $ 2<x<3 $ , $ f(x)=+(x^{2}-1)(x^{2}-3x+2)+\cos x $ $ Lf’(x)=-(x^{2}-1)(2x-3)-2x(x^{2}-3x+2)-\sin x $ $ Lf’(2)=-3-\sin 2 $ $ Rf’(x)=(x^{2}-1)(2x-3)+2x(x^{2}-3x+2)-\sin x $ $ Rf’(2)=(4-1)(4-3)+0-\sin 2=3-\sin 2 $ Hence $ Lf’(2)\ne Rf’(2) $ .