Functions Question 489

Question: If $ f(x)= \begin{cases} & x,\ \ when0<x<1/2 \\ & 1,\ \ \ \text{when }x=1/2 \\ & 1-x,when\ \text{1/2}<x<1 \\ \end{cases} . $ , then

Options:

A) $ \underset{x\to 1/2+}{\mathop{\lim }},f(x)=2 $

B) $ \underset{x\to 1/2-}{\mathop{\lim }},f(x)=2 $

C) $ f(x) $ is continuous at $ x=\frac{1}{2} $

D) $ f(x) $ is discontinuous at $ x=\frac{1}{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

Since $ \underset{x\to 1/2}{\mathop{\lim }}f(x)\ne f( \frac{1}{2} ) $ .