Functions Question 498
Question: Let $ f(x)=sinx $ and $ g(x)=log_{e}| x |. $ If the ranges of the composition functions fog and gof are $ R_1 $ and $ R_2 $ , respectively, then
Options:
A) $ R_1={u:-1\le u<1},R_2={v:-\infty <v<0} $
B) $ R_1={u:-\infty <u<0},R_2={v:-\infty <v<0} $
C) $ R_1={u:-1<u<1},R_2={v:-\infty <v<0} $
D) $ R_1={u:-1\le u\le 1},R_2={v:-\infty <v\le 0} $
Show Answer
Answer:
Correct Answer: D
Solution:
[d] we have $ fog(x)=f(g(x))=sin(log_{e}| x |). $ $ {\log_{e}}| x | $ has range R, for which $ sin({\log_{e}}| x |)\in [-1,1]. $ Therefore, $ R_1={u:-1\le u\le 1}. $ Also, $ gof(x)=g(f(x))=log_{e}| \sin x |. $ $ \because 0\le | \sin x |\le 1 $ or $ -\infty <{\log_{e}}| \sin x |\le 0 $ Or $ R_2={v:-\infty <v\le 0} $