Functions Question 499

Question: Let R be a relation on $ N\times N $ defined by $ (a,b)R(c,d)\Rightarrow ad(b+c)=bc(a+d)R $ is

Options:

A) A partial order relation

B) An equivalence relation

C) An identity relation

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] We observe the following properties: Reflexivity: Let (a, b) be an arbitrary element of $ N\times N $ . Then, $ (a,b)\in N\times N\Rightarrow a,b\in N $

$ \Rightarrow ab(b+a)=ba(a+b)\Rightarrow (a,b)R(a,b) $ Thus, $ (a,b)R(a,b) $ for all $ (a,b)\in N\times N. $ So, R is reflexive on $ N\times N $ . Symmetry: Let $ (a,b),(c,d)\in N\times N $ be such that $ (a,b)R(c,d). $ Then, $ (a,b)R(c,d) $

$ \Rightarrow ad(b+c)=bc(a+d) $

$ \Rightarrow ,cb(d+a)=da(c+b)\Rightarrow (c,d)R(a,b) $ Thus, $ (a,b)R(c,d)\Rightarrow (c,d)R(a,b) $ for all $ (a,b),(c,d)\in N\times N. $ So, R is symmetric on $ N\times N. $ Transitivity: Let $ (a,b),(c,d),(e,f)\in N\times N $ such that $ (a,b)R(c,d),and(c,d)R(e,f). $ Then, $ (a,b)R(c,d)\Rightarrow ad(b+c)=bc(a+d) $

$ \Rightarrow \frac{b+c}{bc}=\frac{a+d}{ad}\Rightarrow \frac{1}{b}+\frac{1}{c}=\frac{1}{a}+\frac{1}{d} $ …….. (i) And $ (c,d)R(e,f)\Rightarrow cf(d+e)=de(c+f) $

$ \Rightarrow \frac{d+e}{de}=\frac{c+f}{cf}\Rightarrow \frac{1}{d}+\frac{1}{e}=\frac{1}{c}+\frac{1}{f} $ …….. (ii) Adding (i) and (ii), we get $ ( \frac{1}{b}+\frac{1}{c} )+( \frac{1}{d}+\frac{1}{e} )=( \frac{1}{a}+\frac{1}{d} )+( \frac{1}{c}+\frac{1}{f} ) $

$ \Rightarrow \frac{1}{b}+\frac{1}{e}=\frac{1}{a}+\frac{1}{f}\Rightarrow \frac{b+e}{be}=\frac{a+f}{af} $

$ \Rightarrow af(b+e)=be(a,f)\Rightarrow (a,b)R(e,f) $ Thus, $ (a,b)R(c,d) $ and $ (c,d)R(e,f) $

$ \Rightarrow (a,b)R(e,f) $ For all $ (a,b),(c,d),(e,f)\in N\times N. $ So, R is transitive on $ N\times N $ . Hence. R being reflexive, symmetric and transitive, is an equivalence relation on $ N\times N $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें