Functions Question 515

Question: If $ f(x)= \begin{cases} & {{(1+2x)}^{1/x}},,\text{for }x\ne 0 \\ & e^{2},,\text{for }x=0, \\ \end{cases} . $ , then

Options:

A) $ \underset{x\to 0+}{\mathop{\lim }},f(x)=e $

B) $ \underset{x\to 0-}{\mathop{\lim }},f(x)=e^{2} $

C) $ f(x) $ is discontinuous at $ x=0 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \underset{x\to 0-}{\mathop{\lim }},f(x)=\underset{x\to 0}{\mathop{\lim }},{{[ {{(1+2x)}^{1/2x}} ]}^{2}}=e^{2}. $