Functions Question 526

Question: If $ f(x)=x-x^{2}+x^{3}-x^{4}+…to $ $ \infty $ for $ | x |<1, $ then $ {f^{-1}}(x)= $

Options:

A) $ \frac{x}{1+x} $

B) $ \frac{x}{1-x} $

C) $ \frac{1-x}{x} $

D) $ \frac{1}{x} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Given $ f(x)=x-x^{2}+x^{3}-x^{4}+…to\infty $
$ \Rightarrow y=\frac{x}{1+x} $ (Infinite G.P.)
$ \Rightarrow y+xy=x\Rightarrow y=x(1-y) $
$ \Rightarrow x=\frac{y}{1-y} $
$ \Rightarrow {f^{-1}}(y)=\frac{y}{1-y}\Rightarrow f^{1}(x)=\frac{x}{1-x} $