Functions Question 53
Question: Let $ f(x)=\frac{x^{2}-4}{x^{2}+4} $ for $ |x|\ >2 $ , then the function $ f:(-\infty ,\ -2]\cup [2,\ \infty )\to (-1,\ 1) $ is [Orissa JEE 2002]
Options:
A) One-to-one into
B) One-to-one onto
C) Many one into
D) Many one onto
Show Answer
Answer:
Correct Answer: C
Solution:
Let  $ Lf’(2)\ne Rf’(2) $
Þ   $ \frac{x^{2}-4}{x^{2}+4}=\frac{y^{2}-4}{y^{2}+4} $          
Þ  $ \frac{x^{2}-4}{x^{2}+4}-1=\frac{y^{2}-4}{y^{2}+4}-1,\Rightarrow x^{2}=y^{2} $
Þ  $ x=\pm y $ ,  \ $ f(x) $  is many-one.            Now for each  $ y\in (-1,,1), $  there does not exist  $ x\in X $  such that $ f(x)=y $ . Hence f is into.
 BETA
  BETA 
             
             
           
           
           
          