Functions Question 53

Question: Let $ f(x)=\frac{x^{2}-4}{x^{2}+4} $ for $ |x|\ >2 $ , then the function $ f:(-\infty ,\ -2]\cup [2,\ \infty )\to (-1,\ 1) $ is [Orissa JEE 2002]

Options:

A) One-to-one into

B) One-to-one onto

C) Many one into

D) Many one onto

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ Lf’(2)\ne Rf’(2) $ Þ $ \frac{x^{2}-4}{x^{2}+4}=\frac{y^{2}-4}{y^{2}+4} $
Þ $ \frac{x^{2}-4}{x^{2}+4}-1=\frac{y^{2}-4}{y^{2}+4}-1,\Rightarrow x^{2}=y^{2} $ Þ $ x=\pm y $ , \ $ f(x) $ is many-one. Now for each $ y\in (-1,,1), $ there does not exist $ x\in X $ such that $ f(x)=y $ . Hence f is into.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें