Functions Question 530

Question: Let R and S be two non-void relations in a set A. which of the following statements is not true?

Options:

A) R and S transitive $ \Rightarrow $ $ R\cup S $ is transitive

B) R and S transitive $ \Rightarrow R\cap S $ is transitive

C) R and S transitive $ \Rightarrow R\cup S $ is symmetric

D) R and S reflexive $ \Rightarrow R\cap S $ is reflexive

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let $ (a,b),(b,c)\in R\cup S. $ It is possible that $ (a,b)\in R-S $ and $ (b,c)\in S-R. $ In such a case, we cannot say that $ (a,c)\in R $ or $ (a,c)\in S. $

$ \therefore (a,c) $ may not be in $ R\cup S. $

$ \therefore R\cup S $ is not transitive. [b] Let $ (a,b),(b,c)\in R\cap S $

$ \therefore (a,b),(b,c)\in R $ and $ (a,b),(b,c)\in S $

$ \therefore (a,c)\in R $ and $ (a,c)\in S $

$ \therefore (a,c)\in R\cap S $
$ \therefore R\cap S $ is transitive. [c] Let $ (a,b)\in R\cup S $
$ \therefore (a,b)\in Ror(a,b)\in S $ Now, $ (a,b)\in R\Rightarrow (b,a)\in R $ ( $ \because $ R is symmetric) $ (a,b)\in S\Rightarrow (b,a)\in S $ ( $ \because $ S is symmetric)

$ \therefore (b,a)\in R\cup S\therefore R\cup S $ is symmetric. [d] Let $ a\in A.\therefore (a,a)\in R $ and $ (a,a)\in S. $

$ \therefore (a,a)\in R\cap S. $
$ \therefore R\cap S $ is reflexive.