Functions Question 532

Question: The domain of the function $ \sqrt{\log (x^{2}-6x+6)} $ is

[Roorkee 1999; MP PET 2002]

Options:

A) $ (-\infty ,\ \infty ) $

B) $ (-\infty ,\ 3-\sqrt{3})\cup (3+\sqrt{3},\ \infty ) $

C) $ (-\infty ,\ 1]\cup [5,\ \infty ) $

D) $ [0,\ \infty ) $

Show Answer

Answer:

Correct Answer: C

Solution:

The function $ f(x)=\sqrt{\log (x^{2}-6x+6)} $ is defined when $ \log (x^{2}-6x+6)\ge 0 $
Þ $ x^{2}-6x+6\ge 1 $
Þ $ (x-5)(x-1)\ge 0 $ This inequality holds if $ x\le 1 $ or $ x\ge 5 $ . Hence, the domain of the function will be $ (-\infty ,,1]\cup [5,,\infty ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें