Functions Question 538

Question: If f(x) is an invertible function and $ g(x)=2f(x)+5, $ then the value of $ {g^{-1}}(x) $ is

Options:

A) $ 2{f^{-1}}(x)-5 $

B) $ \frac{1}{2{f^{-1}}(x)+5} $

C) $ \frac{1}{2}{f^{-1}}(x)+5 $

D) $ {f^{-1}}( \frac{x-5}{2} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Replacing x by $ {g^{-1}}(x), $ we get $ x=2f({g^{-1}}(x))+5 $
$ \therefore f({g^{-1}}(x))=\frac{x-5}{2} $
$ \therefore {g^{-1}}(x)={f^{-1}}( \frac{x-5}{2} ) $