Functions Question 54

Question: If $ f(x)= \begin{cases} & \frac{x-|x|}{x},when x\ne 0 \\ & 2, when x=0 \\ \end{cases} $ , then

[AI CBSE 1982]

Options:

A) $ f(x) $ is continuous at $ x=0 $

B) $ f(x) $ is discontinuous at $ x=0 $

C) $ \underset{x\to 0}{\mathop{\lim }} f(x)=2 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \underset{x\to 0-}{\mathop{\lim }} f(x)=1+1=2,\underset{x\to 0+}{\mathop{\lim }} f(x)=0,f(0)=2 $ .