Functions Question 546
Question: If $ f:R\to R,g:R\to R $ and $ h:R\to R $ are such that $ f(x)=x^{2},g(x)=tanx $ and $ h(x)=logx, $ then the value of $ (ho(gof))(x)ifx=\sqrt{\frac{\pi }{4}} $ will be
Options:
A) 0
B) 1
C) -1
D) $ \pi $
Show Answer
Answer:
Correct Answer: A
Solution:
[a] $ (ho(gof))(x)=h{g{f(x)}} $ $ =h{tanx^{2}}=log{tanx^{2}} $
$ \therefore Atx=\sqrt{\frac{\pi }{4}}\Rightarrow (ho(gof))(x)=logtan\frac{\pi }{4} $ $ =\log 1=0 $