Functions Question 549

Question: Let $ A=Z\cup {\sqrt{2}}. $ Define a relation R in A by aRb if and only if $ a+b\in Z. $ The relation R is

Options:

A) Reflexive

B) Symmetric and transitive

C) Only transitive relation

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] we have, $ R={(a,b):a+b\in Z,a,b\in Z\cup {\sqrt{2}}}. $ $ \sqrt{2}\in A $ and $ \sqrt{2}+\sqrt{2}=2\sqrt{2}\notin Z $
$ \therefore (\sqrt{2},\sqrt{2})\notin R $
$ \therefore $ R is not reflexive. Let $ (a,b)\in R $ $ \therefore a+b\in \mathbb{Z} $ $ \Rightarrow b+a\in \mathbb{Z}\Rightarrow (b,a)\in \mathbb{R} $ $ \Rightarrow $ R is transitive. Let $ (a,b),(b,c)\in R $ $ \therefore a+b,,b+c\in \mathbb{Z} $ $ \therefore $ None of a, b, c, is equal to $ \sqrt{2} $
$ \therefore a,b,c\in Z $
$ \therefore a+c\in Z $
$ \Rightarrow (a,c)\in R \Rightarrow (a,b)\in R \land (b,c)\in R \Rightarrow R $ is transitive. $ \therefore $ R is not an equivalence relation.



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index