Functions Question 553
For real numbers x and y, we define x R y iff $ x-y+\sqrt{5} $ is an irrational number. The relation R is not reflexive, not symmetric, and not transitive.
Options:
A) Reflexive
B) Symmetrical
C) Transitive relation
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
[a]  $ x\in R\Rightarrow x-x+\sqrt{5}=\sqrt{5} $  is an irrational number.
$ \therefore (x,x)\in R $    
$ \therefore  $ R is reflexive.  $ (\sqrt{5},1)\in R $  because  $ \sqrt{5}-1+\sqrt{5} $   $ =2\sqrt{5}-1 $ Which is an irrational number.
$ \therefore (1,\sqrt{5})\notin R.\therefore R $  is not symmetric. We have,  $ (\sqrt{5},1),(1,2\sqrt{5})\in R $ because  $ \sqrt{5}-1+\sqrt{5}=2\sqrt{5}-1 $ and  $ 1-2\sqrt{5}+\sqrt{5}=1-\sqrt{5} $ are irrational numbers. Also,  $ (\sqrt{5},2\sqrt{5})\in R $ and  $ \sqrt{5}-2\sqrt{5}+\sqrt{5}=0. $  which is not an irrational number.
$ \therefore (\sqrt{5},2\sqrt{5})\notin R $
$ \therefore  $ R is not transitive.
 BETA
  BETA 
             
             
           
           
           
          