Functions Question 554

Question: Let $ f(x)=-1+| x-1 |,-1\le x\le 3 $ and $ \le g(x)=2-| x+1 |,-2\le x\le 2, $ then $ (fog)(x) $ , is equal to

Options:

A) $ \begin{cases} x+1-2\le x\le 0 \\ x-10<x\le 2 \\ \end{cases} . $

B) $ \begin{cases} x-1-2\le x\le 0 \\ x+10<x\le 2 \\ \end{cases} . $

C) $ \begin{cases} -1-x-2\le x\le 0 \\ x-10<x\le 2 \\ \end{cases} . $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ (fog)(x)= \begin{cases} f(x+3),1\le x+3\le 2 \\ f(-x+1),-1\le x+2\le 2 \\ \end{cases} . $ $ = \begin{cases} \begin{aligned} & f(x+3),1\le x+3\le 2 \\ & f(-x+1),,-1\le -x+1\le 1 \\ \end{cases} \\ f(-x+1),,1\le -x+1\le 2 \\ \end{cases} . $ $ = \begin{cases} \begin{aligned} & x+1,-2\le x\le -1 \\ & -x-1,,-1\le x\le 0 \\ \end{cases} \\ x-1,,0\le x\le 2 \\ \end{cases} . $