Functions Question 555

Question: If $ f(x)= \begin{cases} & x,,0\le x\le 1 \\ & 2x-1,,1<x \\ \end{cases} . $ , then

[Orissa JEE 2002]

Options:

A) f is discontinuous at $ x=1 $

B) f is differentiable at $ x=1 $

C) f is continuous but not differentiable at $ x=1 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)= \begin{cases} & ,x,0\le x\le 1 \\ & 2x-1,x>1 \\ \end{cases} . $ $ \underset{x\to {1^{-}}}{\mathop{\lim }},f(x)=\underset{h\to 0}{\mathop{\lim }},f(1-h)=\underset{h\to 0}{\mathop{\lim }},(1-h)=1 $ $ \underset{x\to {1^{+}}}{\mathop{\lim }},f(x)=\underset{h\to 0}{\mathop{\lim }},f(1+h)=\underset{h\to 0}{\mathop{\lim 2}},(1+h)-1=1 $ $ \because ,\underset{x\to {1^{-}}}{\mathop{\lim }},f(x)=\underset{x\to {1^{+}}}{\mathop{\lim }},f(x)=1 $ \ Function is continuous at $ x=1 $ . $ Lf’(1)=\underset{h\to 0}{\mathop{\lim }},\frac{f(1-h)-f(1)}{-h}=\underset{h\to 0}{\mathop{\lim }},\frac{(1-h)-1}{-h}=1 $ $ Rf’(1)=\underset{h\to 0}{\mathop{\lim }},\frac{f(1+h)-f(1)}{-h}=\underset{h\to 0}{\mathop{\lim }},\frac{2+2h-1-1}{h}=2 $ \ $ Lf’(1)\ne Rf’(1) $ \ Function is not differentiation at $ x=1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें