Functions Question 563
Question: Let $ f(x)= \begin{cases} & x^{p}\sin \frac{1}{x},x\ne 0 \\ & 0,x=0 \\ \end{cases} . $ then $ f(x) $ is continuous but not differential at $ x=0 $ if
[DCE 2005]
Options:
A) $ 0<p\le 1 $
B) $ 1\le p<\infty $
C) $ -\infty <p<0 $
D) p = 0
Show Answer
Answer:
Correct Answer: A
Solution:
$ f(x)=x^{p}\sin \frac{1}{x},x\ne 0 $  and  $ f(x)=0,\ x=0 $             Since at  $ x=0 $ , $ f(x) $  is a continuous function            \  $ \underset{x\to 0}{\mathop{\lim }},f(x)=f(0)=0 $
Þ  $ \underset{x\to 0}{\mathop{\lim }}x^{p}\sin \frac{1}{x}=0\Rightarrow p>0 $ .             $ f(x) $  is differentiable at  $ x=0 $ , if  $ \underset{x\to 0}{\mathop{\lim }},\frac{f(x)-f(0)}{x-0} $  exists         
Þ  $ \underset{x\to 0}{\mathop{\lim }},\frac{x^{p}\sin \frac{1}{x}-0}{x-0} $  exists         
Þ  $ \underset{x\to 0}{\mathop{\lim }},{x^{p-1}}\sin \frac{1}{x} $  exists         
Þ  $ p-1>0 $  or  $ p>1 $             If  $ p\le 1 $ , then  $ \underset{x\to 0}{\mathop{\lim }},{x^{p-1}}\sin ( \frac{1}{x} ) $  does not exist and at  $ x=0 $   $ f(x) $  is not differentiable.            \ for   $ 0<p\le 1 $  f(x) is a continuous function at  $ x=0 $  but not differentiable.
 BETA
  BETA 
             
             
           
           
           
          