Functions Question 564

Question: If $ f(x)= $ $ \begin{cases} & \frac{1-(x)}{1+x},,x\ne -1 \\ & 1,,,x=-1 \\ \end{cases} . $ , then the value of $ f(|2k|) $ will be (where

[ ] shows the greatest integer function) [DCE 2005]

Options:

A) Continuous at $ x = -1 $

B) Continuous at $ x=0 $

C) Discontinuous at $ x=\frac{1}{2} $

D) All of these are correct.

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)= \begin{cases} & \frac{1-|x|}{1+x},,x\ne -1 \\ & 1,,x=-1 \\ \end{cases} . $ and $ f(x)= \begin{cases} & 1,,x<0 \\ & \frac{1-x}{1+x},,x\ge 0 \\ \end{cases} . $ $ f(2x)= \begin{cases} & 1,,x<0 \\ & \frac{1-[2x]}{1+[2x]},x>0 \\ \end{cases} . $ Þ $ f(2x)= \begin{cases} & 1,x<0 \\ & 1,0\le x<\frac{1}{2} \\ & 0,\frac{1}{2}\le x\le 1 \\ & -\frac{1}{3},,,1\le x<\frac{3}{2} \\ \end{cases} . $
Þ $ f(x) $ , for all values of x where $ x<\frac{1}{2} $ is a continuous function and for $ x=\frac{1}{3} $ and $ x=1 $ $ f(x) $ is a discontinuous function.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें