Functions Question 569

Question: If $ f(x)=\frac{{{\cos }^{2}}x+{{\sin }^{4}}x}{{{\sin }^{2}}x+{{\cos }^{4}}x} $ for $ x\in R $ , then $ f(2002)= $

[EAMCET 2002]

Options:

A) 1

B) 2

C) 3

D) 4

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)=\frac{{{\cos }^{2}}x+{{\sin }^{4}}x}{{{\sin }^{2}}x+{{\cos }^{4}}x} $ Þ $ f(x)=\frac{{{\cos }^{2}}x+{{\sin }^{2}}x(1-{{\cos }^{2}}x)}{{{\sin }^{2}}x+{{\cos }^{2}}x(1-{{\sin }^{2}}x)} $
Þ $ f(x)=\frac{{{\sin }^{2}}x+{{\cos }^{2}}x-{{\sin }^{2}}x{{\cos }^{2}}x}{{{\sin }^{2}}x+{{\cos }^{2}}x-{{\sin }^{2}}x{{\cos }^{2}}x} $
Þ $ f(x)=1 $
Þ $ f(2002)=1 $ .