Functions Question 570
Question: Domain of the function $ f(x)={{\sin }^{-1}}(1+3x+2x^{2}) $ is
[Roorkee 2000]
Options:
A) $ (-\infty ,\ \infty ) $
B) $ (-1,\ 1) $
C) $ [ -\frac{3}{2},\ 0 ] $
D) $ ( -\infty ,\ \frac{-1}{2} )\cup (2,\ \infty ) $
Show Answer
Answer:
Correct Answer: C
Solution:
$ -1\le 1+3x+2x^{2}\le 1 $             Case I :  $ 2x^{2}+3x+1\ge -1 $ ;  $ 2x^{2}+3x+2\ge 0 $              $ x=\frac{-3\pm \sqrt{9-16}}{6} $   $ =\frac{-3\pm i\sqrt{7}}{6} $  (imaginary).            Case II :  $ 2x^{2}+3x+1\le 1 $          
Þ   $ 2x^{2}+3x\le 0 $
Þ   $ 2x,( x+\frac{3}{2} )\le 0 $          
Þ   $ \frac{-3}{2}\le x\le 0 $
Þ   $ x\in [ -\frac{3}{2},0 ] $             In case I, we get imaginary value hence, rejected            \ Domain of function =  $ [ \frac{-3}{2},,0 ] $ .
 BETA
  BETA 
             
             
           
           
           
          