Functions Question 572

Question: If $ f:R\to R $ satisfies $ f(x+y)=f(x)+f(y) $ , for all $ x,\ y\in R $ and $ f(1)=7 $ , then $ \sum\limits_{r=1}^{n}{f(r)} $ is

[AIEEE 2003]

Options:

A) $ \frac{7n}{2} $

B) $ \frac{7(n+1)}{2} $

C) $ 7n(n+1) $

D) $ \frac{7n(n+1)}{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x+y)=f(x)+f(y) $
Put $ x=1,,y=0 $ Þ $ f(1)=f(1)+f(0)=7 $
Put $ x=1,,y=1 $
Þ $ f(2)=2.f(1)=2.7 $
Similarly $ f(3)=3.7 $ and so on

$ \therefore \sum\limits_{r=1}^{n}{f(r)=7,(1+2+3+…..+n)} $ = $ \frac{7n(n+1)}{2} $ .