Functions Question 573

Question: Suppose $ f:

[2,\ 2]\to R $ is defined by $ f(x)= \begin{cases} & -1,for\ -2\le x\le 0 \\ & x-1\ \ \ \ \ for\ 0\le x\le 2 \\ \end{cases} . $ , then {$ x\in (-2,\ 2):x\le 0 $ and $ f(|x|)=x$}= [EAMCET 2003]

Options:

A) $ {-1} $

B) {0}

C) $ {-1/2} $

D) $ \varphi $

Show Answer

Answer:

Correct Answer: C

Solution:

By verification, $ f( | -\frac{1}{2} | )=f( \frac{1}{2} )=\frac{1}{2}-1=-\frac{1}{2} $ Hence $ f(|x|)=x $ .