Functions Question 573
Question: Suppose $ f:
[2,\ 2]\to R $ is defined by $ f(x)= \begin{cases} & -1,for\ -2\le x\le 0 \\ & x-1\ \ \ \ \ for\ 0\le x\le 2 \\ \end{cases} . $ , then {$ x\in (-2,\ 2):x\le 0 $ and $ f(|x|)=x$}= [EAMCET 2003]
Options:
A) $ {-1} $
B) {0}
C) $ {-1/2} $
D) $ \varphi $
Show Answer
Answer:
Correct Answer: C
Solution:
By verification, $ f( | -\frac{1}{2} | )=f( \frac{1}{2} )=\frac{1}{2}-1=-\frac{1}{2} $ Hence $ f(|x|)=x $ .