Functions Question 574

Question: If $ f(x)=sgn (x^{3}) $ , then

[DCE 2001]

Options:

A) f is continuous but not differentiable at $ x=0 $

B) $ f’({0^{+}})=0 $

C) $ f’({0^{+}})=1 $

D) f is not derivable at $ x=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

Here, $ f(x)=sgn x^{3}= \begin{cases} & \begin{cases} \frac{x^{3}}{|x^{3}|}, & for & x^{3}\ne 0 \\ 0\text{ }, & for & x^{3}=0 \\ \end{cases} . \\ & \begin{cases} \frac{x}{|x|}, & for & x\ne 0 \\ 0\text{ ,} & for & x=0 \\ \end{cases} . \\ & \begin{cases} -1, & x<0 \\ 1, & x>0 \\ \end{cases} . \\ \end{cases} . $ Thus, $ f(x)=sgn x^{3}=sgn x, $ which is neither continuous nor derivable at 0. Note that $ {f}’({0^{+}})=\underset{h\to {0^{+}}}{\mathop{lim}}\frac{f(0+h)-f(0)}{h} $ $ =\underset{h\to {0^{+}}}{\mathop{lim}}\frac{1-0}{h}\to \infty $ and $ {f}’({0^{-}})=\underset{h\to {0^{-}}}{\mathop{lim}}\frac{f(0-h)-f(0)}{h} $ $ =\underset{h\to {0^{-}}}{\mathop{lim}}\frac{-1-0}{h}\to \infty $ . $ {f}’({0^{+}})\ne {f}’({0^{-}}) $ , f is not derivable at $ x=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें