Functions Question 583

Question: If $ f(x)= \begin{cases} & {{\sin }^{-1}}|x|,when,x\ne 0 \\ & ,0,,\text{when }x=0 \\ \end{cases} . $ then

Options:

A) $ \underset{x\to 0+}{\mathop{\lim }},f(x)\ne 0 $

B) $ \underset{x\to 0-}{\mathop{\lim }},f(x)\ne 0 $

C) $ f(x) $ is continuous at $ x=0 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \underset{x\to 0}{\mathop{\lim }},f(x)={{\sin }^{-1}}(0)=0 $ and $ f(0)=0 $ Hence $ f(x) $ is continuous at $ x=0. $