Functions Question 583
Question: If $ f(x)= \begin{cases} & {{\sin }^{-1}}|x|,when,x\ne 0 \\ & ,0,,\text{when }x=0 \\ \end{cases} . $ then
Options:
A) $ \underset{x\to 0+}{\mathop{\lim }},f(x)\ne 0 $
B) $ \underset{x\to 0-}{\mathop{\lim }},f(x)\ne 0 $
C) $ f(x) $ is continuous at $ x=0 $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
$ \underset{x\to 0}{\mathop{\lim }},f(x)={{\sin }^{-1}}(0)=0 $ and $ f(0)=0 $ Hence $ f(x) $ is continuous at $ x=0. $