Functions Question 584

Question: Let $ f(x)=(1+b^{2})x^{2}+2bx+1 $ and $ m(b) $ the minimum value of $ f(x) $ for a given b. As b varies, the range of m is

[IIT Screening 2001]

Options:

A) [0, 1]

B) $ ( 0,\ \frac{1}{2} ] $

C) $ [ \frac{1}{2},\ 1 ] $

D) $ (0,\ 1] $

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)=(1+b^{2})x^{2}+2bx+\frac{b^{2}}{(1+b^{2})}-\frac{b^{2}}{1+b^{2}}+1 $
$ =(1+b^{2}),{{( x+\frac{b}{1+b^{2}} )}^{2}}+\frac{1}{1+b^{2}}\ge \frac{1}{1+b^{2}} $
\ $ m(b)=\frac{1}{1+b^{2}} $ , so range of $ m(b)=(0,,1] $ .