Functions Question 588

Question: Let $ f(x)={{(x+1)}^{2}}-1,\ \ (x\ge -1) $ . Then the set $ S={x:f(x)={f^{-1}}(x)} $ is

[IIT 1995]

Options:

A) Empty

B) {0, -1}

C) {0, 1, -1}

D) $ { 0,\ -1,\ \frac{-3+i\sqrt{3}}{2},\ \frac{-3-i\sqrt{3}}{2} } $

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ f(x)={{(x+1)}^{2}}-1,x\ge -1. $ Since $ f(x)={f^{-1}}(x) $

$ \therefore {{(x+1)}^{2}}-1=\sqrt{1+x}-1 $ $ ( \because {f^{-1}}(x)=\sqrt{1+x}-1 ) $

$ \Rightarrow {{(x+1)}^{4}}=1+x\Rightarrow (x+1)[{{(x+1)}^{3}}-1]=0 $

$ \Rightarrow x=-1 $ or $ {{(x+1)}^{3}}=1,\Rightarrow x+1=1,\omega ,{{\omega }^{2}} $

$ \Rightarrow x=0,-1,,\frac{-3+i\sqrt{3}}{2},\frac{-3-i\sqrt{3}}{2}. $