Functions Question 589

Question: If f is an even function defined on the interval (-5, 5), then four real values of x satisfying the equation $ f(x)=f( \frac{x+1}{x+2} ) $ are

[IIT 1996]

Options:

A) $ \frac{-3-\sqrt{5}}{2},\ \frac{-3+\sqrt{5}}{2},\ \frac{3-\sqrt{5}}{2},\ \frac{3+\sqrt{5}}{2} $

B) $ \frac{-5+\sqrt{3}}{2},\ \frac{-3+\sqrt{5}}{2},\ \frac{3+\sqrt{5}}{2},\ \frac{3-\sqrt{5}}{2} $

C) $ \frac{3-\sqrt{5}}{2},\ \frac{3+\sqrt{5}}{2},\ \frac{-3-\sqrt{5}}{2},\ \frac{5+\sqrt{3}}{2} $

D) $ -3-\sqrt{5},\ -3+\sqrt{5},\ 3-\sqrt{5},\ 3+\sqrt{5} $

Show Answer

Answer:

Correct Answer: A

Solution:

Since f is an even function $ f,(-x)=f(x),,\forall x\in (-5,,5). $
We are given that $ f(x)=f,( \frac{x+1}{x+2} ) $

$ \Rightarrow f(-x)=f( \frac{-x+1}{-x+2} ),\Rightarrow f(x)=f,( \frac{-x+1}{-x+2} ) $ $ [\because ,f(-x)=f(x)] $
To find the values of x, we set $ x=\frac{-x+1}{-x+2}\Rightarrow x=\frac{3\pm \sqrt{9-4}}{2}=\frac{3\pm \sqrt{5}}{2} $
Also $ f(x)=f,( \frac{x+1}{x+2} )=f(-x) $
To find the values of x, we set $ -x=\frac{x+1}{x+2}\Rightarrow x=\frac{-3\pm \sqrt{9-4}}{2}=\frac{-3\pm \sqrt{5}}{2} $
Thus the four required values of x are $ \frac{-3-\sqrt{5}}{2},,\frac{-3+\sqrt{5}}{2},,\frac{3-\sqrt{5}}{2},,\frac{3+\sqrt{5}}{2}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें