Functions Question 59

Question: $ \underset{x\to 0}{\mathop{\lim }},x\log (\sin x)= $

Options:

A) ?1

B) $ {\log_{e}}1 $

C) 1

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \underset{x\to 0}{\mathop{\lim }},x\log \sin x=\underset{x\to 0}{\mathop{\lim }}\log ,{{(\sin x)}^{x}}=\log ,[\underset{x\to 0}{\mathop{\lim }},{{(\sin x)}^{x}}] $ $ =\log ,[ \underset{x\to 0}{\mathop{\lim }}{{(1+\sin x-1)}^{\frac{x(\sin x-1)}{\sin x-1}}} ] $ $ ={\log_{e}}[{e^{\underset{x\to 0}{\mathop{\lim }}x(\sin x-1)}}]={\log_{e}}1. $