Functions Question 597

Question: The set of all those points, where the function $ f(x)=\frac{x}{1+|x|} $ is differentiable, is

Options:

A) $ (-\infty ,\infty ) $

B) $ [0,\infty ] $

C) $ (-\infty ,,0)\cup (0,\infty ) $

D) $ (0,\infty ) $

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ h(x)=x,x\in (-\infty ,\infty ) $ ; $ g(x)=1+|x|,x\in (-\infty ,\infty ) $ Here h is differentiable in $ (-\infty ,\infty ) $ but $ |x| $ is not differentiable at $ x=0 $ . Therefore g is differentiable in $ (-\infty ,0)\cup (0,\infty ) $ and $ g(x)\ne 0,x\in $ $ (-\infty ,\infty ) $ , therefore $ f(x)=\frac{h(x)}{g(x)}=\frac{x}{1+|x|} $ It is differentiable in $ (-\infty ,0)\cup (0,\infty ) $ for $ x=0 $ $ \underset{h\to 0}{\mathop{\lim }},\frac{f(h)-f(0)}{h-0}=\underset{h\to 0}{\mathop{\lim }},\frac{\frac{h}{1+|h|}-0}{h}=\underset{h\to 0}{\mathop{\lim }},\frac{1}{1+|h|}=1 $ Therefore f is differentiable at $ x=0 $ , so f is differentiable in $ (-\infty ,\infty ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें