Functions Question 598

Question: Function $ y={{\sin }^{-1}}( \frac{2x}{1+x^{2}} ) $ is not differentiable for

[IIT Screening]

Options:

A) $ |x|,<1 $

B) $ x=1,-1 $

C) $ |x|,>1 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ y’=\frac{1}{\sqrt{1-{{( \frac{2x}{1+x^{2}} )}^{2}}}}.\frac{2(1+x^{2})-4x^{2}}{{{(1+x^{2})}^{2}}}=\frac{2(1-x^{2})}{\sqrt{{{(1-x^{2})}^{2}}.(1+x^{2})}} $
Þ $ y’= \begin{cases} & \frac{2}{1+x^{2}}for|x|<1 \\ & \frac{-2}{1+x^{2}}for|x|>1 \\ \end{cases} . $ Hence for $ |x|=1 $ , the derivative does not exist.