Functions Question 6

Question: $ \underset{x\to 0}{\mathop{\lim }}\frac{{e^{1/x}}-1}{{e^{1/x}}+1}= $

Options:

A) 0

B) 1

C) -1

D) Does not exist

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)=( \frac{{e^{1/x}}-1}{{e^{1/x}}+1} ), $ then $ \underset{x\to 0+}{\mathop{\lim }}f(x)=\underset{h\to 0}{\mathop{\lim }}( \frac{{e^{1/h}}-1}{{e^{1/h}}+1} )=\underset{h\to 0}{\mathop{\lim }}\frac{{e^{1/h}}( 1-\frac{1}{{e^{1/h}}} )}{{e^{1/h}}( 1+\frac{1}{{e^{1/h}}} )}=1 $ Similarly $ \underset{x\to 0-}{\mathop{\lim }}f(x)=-1 $ . Hence limit does not exist.