Functions Question 608

Question: If $ f(x)=\frac{x-3}{x+1} $ , then $ f

[f{f(x)}] $ equals [RPET 1996]

Options:

A) x

B) ?x

C) $ \frac{x}{2} $

D) $ -\frac{1}{x} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ f,[f(x)]=\frac{f(x)-3}{f(x)+1} $ $ =\frac{( \frac{x-3}{x+1} )-3}{( \frac{x-3}{x+1} )+1}=\frac{x-3-3x-3}{x-3+x+1}=\frac{3+x}{1-x} $ Now $ f,[f(f(x))]=f,( \frac{3+x}{1-x} ) $ $ f(x)=(2,,4]-{3} $ .