Functions Question 612
Question: If $ f(x)= \begin{cases} e^{x}+ax, & x<0 \\ b{{(x-1)}^{2}}, & x\ge 0 \\ \end{cases} . $ then
[DSSE 1986]
Options:
A) $ \underset{x\to 0+}{\mathop{\lim }},f(x)\ne 2 $
B) $ \underset{x\to 0-}{\mathop{\lim }},f(x)=0 $
C) $ f(x) $ is continuous at $ x=0 $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
$ f(0+)=f(0-)=2 $ and $ f(0)=2 $ Hence $ f(x) $ is continuous at $ x=0. $