Functions Question 612

Question: If $ f(x)= \begin{cases} e^{x}+ax, & x<0 \\ b{{(x-1)}^{2}}, & x\ge 0 \\ \end{cases} . $ then

[DSSE 1986]

Options:

A) $ \underset{x\to 0+}{\mathop{\lim }},f(x)\ne 2 $

B) $ \underset{x\to 0-}{\mathop{\lim }},f(x)=0 $

C) $ f(x) $ is continuous at $ x=0 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(0+)=f(0-)=2 $ and $ f(0)=2 $ Hence $ f(x) $ is continuous at $ x=0. $