Functions Question 615
Question: If $ f(x+ay,\ x-ay)=axy $ , then $ f(x,\ y) $ is equal to
[AMU 2001]
Options:
A) xy
B) $ x^{2}-a^{2}y^{2} $
C) $ \frac{x^{2}-y^{2}}{4} $
D) $ \frac{x^{2}-y^{2}}{a^{2}} $
Show Answer
Answer:
Correct Answer: C
Solution:
Given  $ f(x+ay,,x-ay)=axy $                            ?..(i)                 Let  $ x+ay=u $  and  $ x-ay=v $             Then  $ x=\frac{u+v}{2} $  and  $ y=\frac{u-v}{2a} $             Substituting the value of x and y in (i), we obtain                     $ f(u,v)=\frac{u^{2}-v^{2}}{4} $
Þ  $ f(x,,y)=\frac{x^{2}-y^{2}}{4} $ .
 BETA
  BETA 
             
             
           
           
           
          