Functions Question 617

Question: If $ x_1=3 $ and $ x>0 $ then $ \underset{n\to \infty }{\mathop{\lim }},x_{n} $ is equal to

Options:

A) -1

B) 2

C) $ \sqrt{5} $

D) 3

Show Answer

Answer:

Correct Answer: B

Solution:

We have $ x_1=3,{x_{n+1}}=\sqrt{2+x_{n}} $
$ x_2=\sqrt{2+x_1}=\sqrt{2+3}=\sqrt{5} $ , $ ,x_3=\sqrt{2+x_2}=\sqrt{2+\sqrt{5}} $
$ \therefore ,x_1>x_2>x_3 $
It can be easily shown by mathematical induction that the sequence $ x_1,x_2,……..x_{n},…. $ is a monotonically decreasing sequence bounded below by 2. So it is convergent. Let $ \lim x_{n}=x. $ Then $ {x_{n+1}}=\sqrt{2+x_{n}},\Rightarrow \lim {x_{n+1}}=\sqrt{2+\lim x_{n}} $
$ \Rightarrow ,x=\sqrt{2+x} $

$ \Rightarrow x^{2}-x-2=0\Rightarrow (x-2),(x+1)=0,\Rightarrow ,x=2 $
$ (\because x_{n}>0,\forall ,n;\therefore x>0) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें