Functions Question 63

Question: $ \underset{x\to \infty }{\mathop{\lim }},[x({a^{1/x}}-1)] $ , $ (a>1)= $

Options:

A) $ \log x $

B) 1

C) 0

D) $ -\log \frac{1}{a} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{x\to \infty }{\mathop{\lim }},x,({a^{1/x}}-1)=\underset{x\to \infty }{\mathop{\lim }}[ \frac{{a^{1/x}}-1}{1/x} ] $ $ =\underset{x\to \infty }{\mathop{\lim }},\frac{[{e^{{\log_{e}}{a^{1/x}}}}-1]}{1/x}={\log_{e}}a=-{\log_{e}}\frac{1}{a}. $