Functions Question 645

Question: Let $ f:N\to N $ defined by $ f(x)=x^{2}+x+1 $ , $ x\in N $ , then f is

[AMU 2000]

Options:

A) One-one onto

B) Many one onto

C) One-one but not onto

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ x,,y\in N $ such that $ f(x)=f(y) $ Then $ f(x)=f(y)\Rightarrow x^{2}+x+1=y^{2}+y+1 $
Þ $ (x-y)(x+y+1)=0\Rightarrow x=y $ or $ x=(-y-1)\notin N $ \ f is one-one. Again, since for each $ y\in N $ , there exist $ x\in N $ \ f is onto.